Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 3(12): 6070-6077, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35983011

RESUMO

Here, we describe a facile route to the synthesis of enzymatically active highly fabricable plastics, where the enzyme is an intrinsic component of the material. This is facilitated by the formation of an electrostatically stabilized enzyme-polymer surfactant nanoconstruct, which, after lyophilization and melting, affords stable macromolecular dispersions in a wide range of organic solvents. A selection of plastics can then be co-dissolved in the dispersions, which provides a route to bespoke 3D enzyme plastic nanocomposite structures using a wide range of fabrication techniques, including melt electrowriting, casting, and piston-driven 3D printing. The resulting constructs comprising active phosphotriesterase (arPTE) readily detoxify organophosphates with persistent activity over repeated cycles and for long time periods. Moreover, we show that the protein guest molecules, such as arPTE or sfGFP, increase the compressive Young's modulus of the plastics and that the identity of the biomolecule influences the nanomorphology and mechanical properties of the resulting materials. Overall, we demonstrate that these biologically active nanocomposite plastics are compatible with state-of-the-art 3D fabrication techniques and that the methodology could be readily applied to produce robust and on-demand smart nanomaterial structures.

2.
Adv Biosyst ; 4(11): e2000101, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33166084

RESUMO

The extent to which biologic payloads can be effectively delivered to cells is a limiting factor in the development of new therapies. Limitations arise from the lack of pharmacokinetic stability of biologics in vivo. Encapsulating biologics in a protective delivery vector has the potential to improve delivery profile and enhance performance. Coacervate microdroplets are developed as cell-mimetic materials with established potential for the stabilization of biological molecules, such as proteins and nucleic acids. Here, the development of biodegradable coacervate microvectors (comprising synthetically modified amylose polymers) is presented, for the delivery of biologic payloads to cells. Amylose-based coacervate microdroplets are stable under physiological conditions (e.g., temperature and ionic strength), are noncytotoxic owing to their biopolymeric structure, spontaneously interacted with the cell membrane, and are able to deliver and release proteinaceous payloads beyond the plasma membrane. In particular, myoglobin, an oxygen storage and antioxidant protein, is successfully delivered into human mesenchymal stem cells (hMSCs) within 24 h. Furthermore, coacervate microvectors are implemented for the delivery of human bone morphogenetic protein 2 growth factor, inducing differentiation of hMSCs into osteoprogenitor cells. This study demonstrates the potential of coacervate microdroplets as delivery microvectors for biomedical research and the development of new therapies.


Assuntos
Proteína Morfogenética Óssea 2 , Diferenciação Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Células-Tronco Mesenquimais/metabolismo , Amilose/química , Biopolímeros/química , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacocinética , Proteína Morfogenética Óssea 2/farmacologia , Células Cultivadas , Humanos
3.
Bioinspir Biomim ; 16(2)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33065569

RESUMO

Cactus fibres have previously shown unusual mechanical properties in terms of bending and axial stiffness due to their hierarchical structural morphology. Bioinspiration from those cactus fibres could potentially generate architected materials with exciting properties. To that end we have built bioinspired artificial analogues of cactus fibres to evaluate their mechanical properties. We have generated 3D printed specimens from rendered models of the cactus structure using two different printing techniques to assess the reproducibility of the structural topology. Bioinspired additive manufactured materials with unusual mechanical properties constitute an ever-evolving field for applications ranging from novel wing designs to lightweight plant-inspired analogues. The cactus-inspired 3D printed specimens developed here demonstrate an unusually high bending to axial stiffness ratios regardless of the manufacturing method used. Moreover, when compared to their equivalent beam analogues the cactus specimens demonstrate a significant potential in terms of specific (weight averaged) flexural modulus. Imaging of the artificial cactus reinforcements has enabled the generation of a one-dimensional reduced order finite element model of the cactus structure, with a distribution of cross sections along the length that simulate the inertia and mechanical behaviour of the cactus topology. The novel bioinspired material structure shows an excellent reproducibility across different manufacturing methods and suggest that the tree-like topology of the cactus fibre could be very suited to applications where high bending to axial stiffness ratios are critical.


Assuntos
Materiais Biomiméticos , Cactaceae , Impressão Tridimensional , Reprodutibilidade dos Testes
4.
Nat Commun ; 10(1): 1887, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015421

RESUMO

Cell membrane re-engineering is emerging as a powerful tool for the development of next generation cell therapies, as it allows the user to augment therapeutic cells to provide additional functionalities, such as homing, adhesion or hypoxia resistance. To date, however, there are few examples where the plasma membrane is re-engineered to display active enzymes that promote extracellular matrix protein assembly. Here, we report on a self-contained matrix-forming system where the membrane of human mesenchymal stem cells is modified to display a novel thrombin construct, giving rise to spontaneous fibrin hydrogel nucleation and growth at near human plasma concentrations of fibrinogen. The cell membrane modification process is realised through the synthesis of a membrane-binding supercationic thrombin-polymer surfactant complex. Significantly, the resulting robust cellular fibrin hydrogel constructs can be differentiated down osteogenic and adipogenic lineages, giving rise to self-supporting monoliths that exhibit Young's moduli that reflect their respective extracellular matrix compositions.


Assuntos
Engenharia Celular/métodos , Membrana Celular/química , Fibrina/metabolismo , Trombina/química , Cicatrização , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Membrana Celular/metabolismo , Modelos Animais de Doenças , Módulo de Elasticidade , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Hidrogéis/química , Hidrogéis/metabolismo , Células-Tronco Mesenquimais , Polímeros/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tensoativos/química , Trombina/genética , Trombina/metabolismo , Peixe-Zebra
5.
J Biomed Mater Res A ; 105(4): 1112-1122, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28093865

RESUMO

Poly(ethylene glycol) (PEG) hydrogels provide a versatile platform to develop cell instructive materials through incorporation of a variety of cell adhesive ligands and degradable chemistries. Synthesis of PEG gels can be accomplished via two mechanisms: chain and step growth polymerizations. The mechanism dramatically impacts hydrogel nanostructure, whereby chain polymerized hydrogels are highly heterogeneous and step growth networks exhibit more uniform structures. Underpinning these alterations in nanostructure of chain polymerized hydrogels are densely-packed hydrophobic poly(methyl methacrylate) or poly(acrylate) kinetic chains between hydrophilic PEG crosslinkers. As cell-material interactions, such as those mediated by integrins, occur at the nanoscale and affect cell behavior, it is important to understand how different modes of polymerization translate into nanoscale mechanical and hydrophobic heterogeneities of hydrogels. Therefore, chain- and step-growth polymerized PEG hydrogels with macroscopically similar macromers and compliance (for example, methacrylate-functionalized PEG (PEGDM), MW = 10 kDa and norbornene-functionalized 4-arm PEG (PEGnorb), MW = 10 kDa) were used to examine potential nanoscale differences in hydrogel mechanics and hydrophobicity using atomic force microscopy (AFM). It was found that chain-growth polymerized network yielded greater heterogeneities in both stiffness and hydrophobicity as compared to step-growth polymerized networks. These nanoscale heterogeneities impact cell-material interactions, particularly human mesenchymal stem cell (hMSC) adhesion and spreading, which has implications in use of these hydrogels for tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1112-1122, 2017.


Assuntos
Resinas Acrílicas , Hidrogéis , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Polietilenoglicóis , Polimetil Metacrilato , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...